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Abstract

Despite its ubiquitous presence as binding phase in all cementitious materials, the mechanical

behavior of calcium–silicate–hydrates (C–S–H) is still an enigma that has deceived many decoding

attempts from experimental and theoretical sides. In this paper, we propose and validate a new

technique and experimental protocol to rationally assess the nanomechanical behavior of C–S–H

based on a statistical analysis of hundreds of nanoindentation tests. By means of this grid indentation

technique we identify in situ two structurally distinct but compositionally similar C–S–H phases

heretofore hypothesized to exist as low density (LD) C–S–H and high density (HD) C–S–H, or outer

and inner products. The main finding of this paper is that both phases exhibit a unique nanogranular

behavior which is driven by particle-to-particle contact forces rather than by mineral properties. We

argue that this nanomechanical blueprint of material invariant behavior of C–S–H is a consequence

of the hydration reactions during which precipitating C–S–H nanoparticles percolate generating

contact surfaces. As hydration proceeds, these nanoparticles pack closer to center on-average around

two characteristic limit packing densities, the random packing limit (Z ¼ 64%) and the ordered face-

centered cubic (fcc) or hexagonal close-packed (hcp) packing limit (Z ¼ 74%), forming a

characteristic LD C–S–H and HD C–S–H phase.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

No doubt, calcium–silicate–hydrate (C–S–H), the binding phase in all cementitious
materials, is one of the most complicated and intriguing material systems in materials
see front matter r 2006 Elsevier Ltd. All rights reserved.
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science and engineering. While several models coexist that describe the structural evolution
of C–S–H at the crystal chemical level (for a recent review see Richardson, 2004), per
today, the link between composition, nano- and microstructure and mechanical behavior
of C–S–H is still an enigma that has deceived many decoding attempts. From atomic force
microscope (AFM) investigations (Nonat, 2004), small angle neutron scattering (SANS)
(Jennings et al., 2006) and transmission electron microscopy (TEM) (Richardson, 2004),
there is now ample evidence that the elementary C–S–H particle is a nanoparticle whose
smallest dimension is on the order of 5 nm. Depending on type and mode of observation,
the opinions, however, differ as regards the other dimensions. To name a few: based on
AFM measurements, Nonat (2004) suggests a brick-type morphology of the nanoparticle
(lamellae) of dimension 60� 30� 5 nm3. From density, composition and surface area
measurements, Jennings (2000, 2004) and Tennis and Jennings (2000) postulate a globular
C–S–H particle morphology of characteristic size 5.6 nm, which includes an 18%
nanoporosity. At larger scales, those globular particles agglomerate to form a low density
(LD) and a high density (HD) C–S–H ‘gel’, that differ only in the gel-porosity. Based on
TEM imagining of C3S and C2S pastes, Richardson (2004) attributes the globular particle
morphology to the so-called inner product (Ip) C–S–H (which is 4–8 nm in size in pastes
hydrated at 20 �C but smaller at elevated temperatures, 3–4 nm), from a fibrillar
morphology of outer product (Op) C–S–H which consists of aggregations of long thin
particles that are about 3 nm in their smallest dimension and of variable length, ranging
from a few nanometers to many tens of nanometers.

Does morphology matter? This is the question that arises from those different
observations–conjectures, and it is the question we want to address in this paper. To
achieve our goal, we have developed a new technique based on the statistical analysis of
hundreds of nanoindentation tests on cement paste. This technique builds on our previous
nanoindentation analysis of highly heterogeneous composites (Constantinides et al., 2003;
Constantinides and Ulm, 2004; Ulm et al., 2005), and carries it on to the next level to allow
for identification and quantification of meaningful mechanical phase properties, volume
fractions and morphology of multi-phase and multi-scale composites from first- and
second-order statistical moments.

The paper is composed of two parts: we first present the novel grid-indentation
technique and suggest a protocol how to perform such tests and analysis. This technique is
applied to and thoroughly validated for C–S–H, to obtain key mechanical properties of
C–S–H that should be helpful to identify the link between morphology and mechanical
properties of C–S–H. The second part analyzes the experimental results from a
micromechanics perspective and aims at identifying if and how morphology affects the
mechanical nanoproperties of C–S–H.

2. Materials and methods

2.1. Nanoindentation on natural composites

It is now well established that the response of a material upon the reversal of contact
loading provides access to the elastic properties of the intended material (for recent review
see Oliver and Pharr, 2004; Cheng and Cheng, 2004). The indentation technique consists of
establishing contact between an indenter of known geometry and mechanical properties
(typically diamond) and the indented material for which the mechanical properties are of
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interest, and subsequently acquiring the continuous change in penetration depth h as a
function of increasing indentation load P (P2h curve, see Fig. 1). Typically, the extraction
of mechanical properties is achieved by applying a continuum scale mechanical model to
derive two quantities, indentation hardness H and indentation modulus M:

H ¼
def P

Ac
, (1)

M ¼
def

ffiffiffi
p
p

2

Sffiffiffiffiffiffi
Ac

p . (2)

All quantities required to determine H and M are directly obtained from the P2h curves,
with the exception of the projected area of contact Ac. Chief among those are the
maximum applied force Pmax and corresponding maximum depth hmax, the unloading
indentation stiffness S ¼ ðdP=dhÞh¼hmax

, and residual indentation depth hf upon full
unloading of the material surface (Fig. 1). The contact area Ac can also be extrapolated
from the maximum depth hmax. Furthermore, M can be linked to the elastic constants of
the indented material by applying a linear elastic model to the data (Galin, 1961; Sneddon,
1965). In the isotropic case, M reduces to the plane-stress elastic modulus,

M ¼
E

1� n2
¼ 4G

3K þ G

3K þ 4G
, (3)

where E is the Young’s modulus, n the Poisson’s ratio; G is the shear modulus and K the
bulk modulus of the indented isotropic material. Similarly, the hardness H can be related
to strength properties, namely the cohesion c and the friction angle j, and the cone angle y
(Ganneau et al., 2006):

H ¼ cFðj; yÞ, (4)

where Fðj; yÞ is a dimensionless function.
The methodology, however, is currently restricted to monolithic systems, and little has

been reported for indentation on composite materials, a category composing the majority
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Fig. 1. Indentation force–indentation depth curves, P2h: (a) regular response satisfying self-similarity;

(b) irregular response with jump in displacement due to fracture.



ARTICLE IN PRESS
G. Constantinides, F.-J. Ulm / J. Mech. Phys. Solids 55 (2007) 64–90 67
of solids. Application of Eqs. (1)–(4) to multi-scale composites poses several challenges, as
the underlying contact mechanics analysis relies on the self-similarity of the indentation
test on an infinite half-space. This strictly holds only for homogeneous materials that
respect the separation of scale condition:

d5L5h, (5)

where L is the representative elementary volume (rev), which must be much greater
than the size of the largest heterogeneity of size d contained in the rev; and much smaller
than the indentation depth h, which defines the order of length magnitude of the
strain gradient variation in the microstructure. The focus of the next sections is to show
how this powerful technique can be employed for highly heterogeneous materials, like
cement paste.

2.1.1. Gedanken experiment

Proposition 1. Consider a material to be composed of two phases of different mechanical

properties and characterized by a length scale D. If the indentation depth is much smaller than

the characteristic size of the phases, h5D, then a single indentation test gives access to the

material properties of either phase 1 or phase 2. If, in addition, a large number of tests ðNb1Þ
is carried out on a grid defined by a grid spacing ‘ that is larger than the characteristic

size of the indentation impression, so to avoid interference in between individual indentation

tests, and much larger than the characteristic size of the two phases, ‘
ffiffiffiffiffi
N
p

bD, so that

the locus of indentation has no statistical bias with respect to the spatial distribution of

the two phases, the probability of encountering one or the other phase is equal to the

surface fraction occupied by the two phases on the indentation surface. On the other hand,
an indentation test performed to a maximum indentation depth that is much larger than

the characteristic size of the individual phases, hbD, senses the average response of

the composite material, and the properties extracted from such an indentation experiment

are representative in a statistical sense of the average properties of the composite

material.

This simple Gedanken experiment has all the ingredients of statistical indentation
analysis that need to be performed when it comes to natural composite materials. The key
results of such analysis are distributions and their derivatives (e.g., histograms or
frequency diagrams) of mechanical properties determined by a large number of
indentation experiments at a specific scale of material observation defined by the
indentation depth. Generally speaking, small indentation depths, roughly h=Do 1

10
(Buckle,

1973; Durst et al., 2004) provide access to mechanical phase properties, while greater
indentation depths ðh=D46Þ provide access to homogenized material properties of the
composite. This principle is sketched in Fig. 2.

2.1.2. Deconvolution technique

The above Gedanken experiment is based on the premise that the two phases have
properties of sufficient contrast so that those can be separated in small-scale indentation
tests. Natural composite materials are generally more complex, requiring the use of some
elementary statistics relations to analyze the indentation data. Let us assume that the
distribution of the mechanical property x ¼M;H of each phase J is best approximated by
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Fig. 2. Principle of statistical analysis of nanoindentation results. Small indentation depths allow the
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the normal or Gaussian distribution:

pJ ðxÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2ps2J

q exp �
ðx� mJ Þ

2

2s2J

� �
, (6)

where mJ is the arithmetic mean of all NJ values of each phase, while the standard
deviation sJ is a measure of the dispersion of those values:

mJ ¼
1

NJ

XNJ

k¼1

xk; s2J ¼
1

NJ � 1

XNJ

k¼1

ðxk � mJ Þ
2. (7)

The case of a single phase, n ¼ 1, corresponds to the case of a homogeneous material
(Fig. 2—top), for which mean value and standard deviation describe the properties of the
material in a statistical sense. In the case of several phases ðJ ¼ 1; . . . ; nÞ, that all follow a
normal distribution (Fig. 2—bottom), and which do not (mechanically) interact with each
other, the overall frequency distribution of the mechanical property x ¼ ðM ;HÞ obeys to
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the following theoretical probability density function:

PðxÞ ¼
Xn

J¼1

f JpJðxÞ, (8)

where f J ¼ NJ=N is the surface fraction occupied by phase J on the indented surface,
which is subjected to the constraint:

Xn

J¼1

f J ¼ 1. (9)

The problem so defined involves 3n� 1 unknowns; that is three unknown per phase,
mJ ; sJ ; f J , reduced by the compatibility condition (9). If empirical frequency densities or
response distributions are obtained by nanoindentation in form of discrete values Pi one
can determine the unknowns by minimizing the standard error:

Find ðmJ ; sJ ; f JÞ from min
Pm
i¼1

ðPi � PðxiÞÞ
2

m

s.t.:
Pn
J¼1

f J ¼ 1;
(10)

where Pi is the observed value of the experimental frequency density; PðxiÞ ¼Pn
J¼1 f JpJðxiÞ is the value of the theoretical probability density function shown in

Eq. (8) at point xi, and m is the number of intervals (bins) chosen to construct the
histogram. The number of observed values Pi should exceed the number of unknowns,
and must necessarily be smaller than the total number of tests N carried out on the
surface; hence

3n� 1pmoN. (11)

2.1.3. A posteriori check of self-similarity

The deconvolution technique is based on the assumption that each individual
indentation test respects the self-similarity of indentation in an infinite half-space. It is
thus necessary to check a posteriori the relevance of this assumption by analyzing the
dimensionless invariants of the indentation test. For conical indentation into an isotropic
elastoplastic cohesive-frictional material, these are (Cheng and Cheng, 2004; Ganneau
et al., 2006):

P

Mh2
¼ Pa

c

M
; n;j; y

� �
, ð12aÞ

Ac

h2
¼

P

Hh2
¼ Pb

c

M
; n;j; y

� �
, ð12bÞ

where c=M is the cohesion-to-indentation modulus ratio, n is the Poisson’s ratio, j is the
friction angle, and y is the half-apex angle of the conical indenter (Fig. 1). It is important to
note that those invariant relations, because of the self-similarity of the indentation test, do
not depend on any length scale, and in particular not on the indentation depth h.
Therefore, plotting those invariants as a function of the indentation depth, provides an
indirect means to check a posteriori the assumed self-similarity of the indentation data,
and hence the scale separability condition (5).
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2.2. Materials

2.2.1. Sample preparation

The material investigated here is a white cement paste. It is the same material tested by
Thomas and Jennings (2002) for weight-loss experiments: white portland cement with a
low aluminates content was cast into plastic molds at a water:cement ratio of w=c ¼ 0:5, to
form bars measuring 0:25m� 0:025m� 0:025m. The specimens were hydrated under
limewater at room temperature and kept in such conditions until testing. For the
indentation testing, the square plate specimens were cut into slices of approximate
thickness 5–10mm. The surfaces were prepared following standard procedures for SEM
investigations of cementitious materials (Stutzman and Clifton, 1999): specimens were
ground and polished with silicon carbide papers and diamond particles to obtain a flat and
smooth surface finish. This was achieved in six stages of decreasing fineness with the last
one being in the range of 250 nm. Such a smooth surface is of critical importance for
nanoindentation tests, so to avoid introducing another length scale in the similarity
analysis: the surface roughness. Polished surfaces were subsequently imaged using AFM
and the average roughness and root mean square roughness were found to be on the order
of 10–30 nm. Furthermore, special attention was paid to keep the specimens flat and
parallel on both sides, since this could influence the angle of indentation, and thus the
result of the measurements. After polishing, the samples were placed in an ultrasonic bath
to remove the dust and diamond particles left on the surface or in the pore structure. The
age of the material at testing was 5 months.

2.2.2. Choice of nanoindentation depth

Nanoindentation that focus on identifying phase properties, requires to choose the
maximum indentation depth hmax so to respect on-average the scale separability condition
(5) and the 1

10
rule of thumb:

d5hmaxo
D

10
, (13)

where d and D stand for the characteristic size of, respectively, the largest heterogeneity of
the indented material and the microstructure. In the case of C–S–H, prime candidates for d

are the single colloidal particle in C–S–H or the gel pores of similar size, d�5 nm. On the
other hand, the characteristic size of the microstructure D is more difficult to estimate, as
the microstructure itself depends on mix proportions, hydration degree, etc. For a fully
hydrated w=c ¼ 0:5 cement paste, a good estimate of the characteristic length scale of the
microstructure can be deduced from TEM images (Richardson, 2004) to be on the order of
D�123mm, representing the smallest microstructural length scale among cement pastes’
constituents (portlandite crystals and clinker particles are usually on the order of tens or
hundreds of microns). Hence, an appropriate indentation depth that allows one to access
the properties of the C–S–H phases by nanoindentation is

hmax 2 ½100; 300�nm. (14)

For smaller depths, the indentation response will be affected by the discrete nature of the
colloidal particles, and for larger depths the indentation response will be affected by the
microstructure and the interaction of different phases. The order of magnitude of hmax also
allows access to the in situ properties of portlandite (CH) and residual clinker phases if
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present. Indeed, the elementary size of the portlandite crystal structure is on the order of
d ¼ 0:5 nm and the size D of crystals present in cementitious materials is on-average of
micrometer dimension, which falls in the range of values covered by (14). We should
emphasize, however, that (13) is only satisfied in an average sense, and that the presence of
‘violators’ of those conditions is inevitable. For instance, nanoindentation responses
dominated by adjacent capillary voids of a characteristic size of 10–100 nm, fall in this
category of indentation tests that do not satisfy the scale separability condition. On the
other hand, within the context of the grid indentation technique, the error induced by
indentation on such phases should be of random nature, and should be captured by the
statistical analysis method.

Last, a convenient way to achieve the target indentation depth (14) is to employ a series
of load-controlled indentation tests. This requires some experimental iterations. For the
tested white cement paste, we found that a maximum load of roughly Pmax ¼ 500 mN yields
an average maximum indentation depth of hmax ¼ 167� 53 nm. In all indentation tests, a
trapezoidal load history was prescribed, defined by a loading time tL ¼ 10 s, a holding time
of tH ¼ 5 s, and an unloading time of tU ¼ 10 s. In addition, a hold period of 20 s at the
onset of unloading facilitated the correction for any thermal drift effects in the system.

2.2.3. Indentation data analysis

Prior to the application of the statistical method, the P2h curves of all tests are
inspected manually (visual inspection), in order to detect those that deviate from the
theoretical P / h2 scaling relation for conical or sharp indentation (see Eq. (12)). Such
curves, as curve (b) in Fig. 1, which are a result of either improper contact detection or
severe damage and fracture during loading, are easily detectable from their large
(compared to the average value) recorded maximum penetration depth in the force driven
indentation tests. They clearly violate the self-similarity of continuum indentation analysis
and must be excluded from the statistical analysis. The largest percentage of discarded
curves was related to surface preparation procedures, and the number of tests excluded for
this reason was generally smaller than 5%. The rest of the indentation data were analyzed
based on the tools of continuum indentation analysis: a function of the form P ¼

bðh� hf Þ
m (where b; hf ;m are fitting parameters) is fitted to the unloading portion of each

P2h curve, and the indentation stiffness S ¼ ðdP=dhÞh¼hmax
is evaluated at maximum load

Pmax. The indentation modulus M and the indentation hardness H are then calculated
from (1) and (2), where the area of contact Ac at maximum load is estimated from the
Oliver and Pharr (1992) method.

3. Nanoindentation results

3.1. Indentation modulus and hardness frequency densities

Figs. 3–5 display the experimental frequency distributions of the indentation modulus
and the indentation hardness for three grid indentation experiments of 100 indents (10 �
10, grid spacing ‘ ¼ 10mm) performed with a Berkovich indenter on different sample areas
(labeled N-1, N-2, N-3) of the same surface, together with fitted frequency distribution
functions using the deconvolution technique. Fig. 6 displays the same for all 300
indentation tests. The three test series were carried out to study (1) the repeatability of the
proposed test procedure and (2) the accuracy and convergence of the proposed
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deconvolution technique. Table 1 summarizes the derived quantities obtained by
application of the deconvolution technique. In this application we sought for the
minimum number of phases n required to represent the experimental frequency
densities accurately. It turned out that n ¼ 4 is sufficient to model the indentation data
ðM ;HÞ on the w=c ¼ 0:5 cement paste for indentation moduli Mp50GPa and indentation
hardness Hp1:5GPa. Values greater than M ¼ 50GPa and H ¼ 1:5GPa are attributed to
indentation on residual clinker particles eventually present in the material, for which the
indentation properties are known (MX125GPa, HX8:0GPa; Velez et al., 2001). Those
higher stiffness and hardness values allow estimating the hydration degree from

x ¼ 1�
Xn¼4
J¼1

f J , (15)
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where n are the four hydration phases detailed below. For the tested cement paste, the
hydration degree so obtained is on the order of 94–95%, as one would expect from
a well-hydrated (5 months old) w=c ¼ 0:5 cement paste. The remaining four hydration
phases from left (low stiffness/hardness) to right (high stiffness/hardness) are detailed
below.

3.1.1. A low stiffness/hardness phase (‘MP’)

The lowest characteristic stiffness–hardness phase in Figs. 3–6 has a stiffness of M ¼

8:1GPa and a hardness of H ¼ 0:17GPa. We attribute those very low properties to
material regions dominated by capillary pores. As stated before the indentation properties
obtained for this phase should be handled with care, as the indentation data are often in
violation of the scale separability condition required for the application of continuum
indentation analysis. In return, considering those values in the deconvolution technique
provides a means to estimate the volume fractions of the capillary pores; here (based on
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300 indentation tests):

f MP ¼ 629%. (16)

The order of magnitude of the capillary porosity is consistent with Powers–Brownyard’s
semi-empirical relationship between macroporosity, initial w=c-ratio and degree of
hydration x (Powers and Brownyard, 1948):

f MP

w

c
¼ 0:5; x ¼ 0:95

� �
¼

w=c

w=cþ 0:32
ð1þ 1:32xÞ � 1:32x ¼ 12%. (17)

Estimates provided by the deconvolution technique are expected to approach this
value as the number of tests increases and the spacing between indents is reduced.
There is, however, an inherent limitation to porosity determination from indentation that
relates to the nature of the test itself. Each indentation commences upon contact detection
through force measurements, and surface pores, therefore, cannot be sampled by
indentation, unless the indenter touches the surface of the pore valley. One could
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circumvent this drawback by impregnating the specimen surface with epoxy prior to
testing, which might however compromise access to phase properties, as chemomechanical
change during the impregnation process (for instance, C–S–H polymerization) cannot be
excluded.

3.1.2. The low density C– S– H phase (‘LD C– S– H’)

The second peak in the frequency plots 3–6 is attributed to a LD C–S–H phase. Acker
(2001) was the first to report values of M ¼ 20� 2GPa and H ¼ 0:80� 0:2GPa for a
(calcium-to-silica ratio) C=So1 C–S–H phase in a w=c ¼ 0:2 cementitious material.
Constantinides et al. (2003) report MLD ¼ 21:7� 2:2GPa for a w=c ¼ 0:5 cement paste,
obtained by manually fitting Gaussian curves to the histogram. The stiffness values
obtained here on the white cement paste with the (refined) deconvolution technique
(300 values) are very much consistent with those values:

MLD ¼ 18:2� 4:2GPa; HLD ¼ 0:45� 0:14GPa. (18)
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Table 1

Summary of grid indentation results for three different trials of 100 indentations obtained from a statistical

analysis of the frequency diagrams: indentation modulus, hardness, volume fractions, and coefficients of

variations for constituent phases

½#� Pmax ðmNÞ hmax (nm) Phase J MP LD C–S–H HD C–S–H CH

x M H M H M H M H

N-1 100 474� 10 170� 66 mJ ðGPaÞ 9.9 0.19 20.0 0.44 28.4 0.77 37.7 1.10

ðs=mÞJ ð%Þ 18 45 19 35 12 22 4 16

f J (%) 7 9 50 41 22 26 13 17

N-2 100 469� 14 201� 90 mJ ðGPaÞ 8.4 0.16 17.1 0.44 28.3 0.87 40.9 1.37

ðs=mÞJ (%) 18 19 18 30 15 14 8 9

f J (%) 10 15 47 52 32 21 7 6

N-3 100 475� 12 176� 75 mJ ðGPaÞ 8.0 0.18 18.5 0.49 30.7 0.81 43.2 1.33

ðs=mÞJ (%) 36 28 23 29 10 30 6 19

f J (%) 11 6 51 48 25 25 10 16

ALL 300 473� 12 181� 77 mJ ðGPaÞ 8.1 0.17 18.2 0.45 29.1 0.83 40.3 1.31

ðs=mÞJ (%) 21 30 23 31 14 21 10 17

f J (%) 6 9 51 48 27 26 11 12

Table 2

Mass density reported by Jennings (2004), and derived packing density values of C–S–H at different scales

Scale Density ðkg=m3Þ Packing density

C–S–H solid rsat rdry Z ¼ 1� f
Basic building block 2800 1

C–S–H particle 2480 2300 0:82
C–S–H matrix

LD C–S–H 1930 1440 0:63� 0:01
HD C–S–H 2130 1750 0:76� 0:02

rsat and rdry stand for the density, respectively, at full water saturation of the pore space and after oven-drying.

G. Constantinides, F.-J. Ulm / J. Mech. Phys. Solids 55 (2007) 64–9076
Note that the hardness value of the considered phase deviates from the value reported by
Acker (2001) for a C–S–H phase having C=So1, which may simply be due to the fact that
the C=S ratio of our w=c ¼ 0:5 system is on-average higher; typically C=S�1:75, which
seems to affect the hardness of the LD C–S–H. In this system, the LD C–S–H is readily
recognized to be the dominating phase. It makes up 65% of the total C–S–H volume, the
rest being HD C–S–H. We obtained the same value of LD C–S–H in our previous
investigation of a normal cement paste (not white cement paste) prepared at the same
water–cement ratio of 0.5 (Constantinides et al., 2003). This value is also in excellent
agreement with the empirical relationship of the LD C–S–H-to-total C–S–H mass ratio
relation proposed by Tennis and Jennings (2000):

Mr ¼
mLD

mCSH
¼ 3:017

w

c
x� 1:347xþ 0:538 (19)
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which using known density values of the C–S–H phases (see Table 2)1translates into a LD
C–S–H volume fraction of VLD=VCSH ¼ 62%.

3.1.3. The high density C– S– H phase (‘HD C– S– H’)

The third peak in the frequency plots 3–6 is attributed to a HD C–S–H phase. Acker
(2001) reports M ¼ 31� 4GPa and H ¼ 0:90� 0:3GPa for a C=S41 C–S–H phase in a
w=c ¼ 0:2 cementitious material. Constantinides et al. (2003) report MHD ¼ 29:4�
2:4GPa for a w=c ¼ 0:5 cement paste. Both values are in excellent agreement with the
phase value we obtain here for the HD C–S–H phase in a w=c ¼ 0:5 system (300 values):

MHD ¼ 29:1� 4:0GPa; HHD ¼ 0:83� 0:18GPa. (20)

3.1.4. Portlandite (CH)

The fourth peak in the frequency plots 3–6 is attributed to portlandite crystals dispersed
in the cement paste matrix. Previous reported indentation properties for portlandite are
M ¼ 36� 3GPa, H ¼ 1:35� 0:5GPa (Acker, 2001) and M ¼ 38� 5GPa (Constanti-
nides and Ulm, 2004), which are in excellent agreement with the in situ values obtained in
this investigation (300 values):

MCH ¼ 40:3� 4:2GPa; HCH ¼ 1:31� 0:23GPa. (21)

The estimated volume fraction of CH is

f CH ¼ 11212%. (22)

It is instructive to compare this value with an estimate of CH volume fraction calculated
on the basis of cement chemistry. For the given cement composition of the white cement
paste having 72wt% of C3S (mC3S) and 17wt% of C2S (mC2S) the volume fraction of CH
can be estimated from the stoichiometry of the chemical reactions (Ulm et al., 2004):

f CH ’
0:42mC3S þ 0:13mC2S

0:71þ 2:24w=c
’ 18%. (23)

While of the same order, the physical chemistry estimate (23) is higher than the one
estimated from the grid indentation technique. There may be several reasons for this
difference, one being that the physical chemistry expression is derived from the
stoichiometry of CH-formation at complete hydration. But the most likely reason for
this difference is the fact that CH crystals in cement pastes are large crystals that are
irregularly dispersed throughout the microstructure. It is most likely that a greater number
of indentation tests on a larger surface would allow a more accurate measure of the true
CH crystal volume fraction.
1Indeed, a straightforward substitution of the mass of the saturated C–S–H particle (which includes an 18%

nanoporosity) and of the water mass saturating the gel porosity yields the following expression for the LD

C–S–H-to-total C–S–H volume ratio:

VLD

VCSH
¼

MrðrsZHD þ rwð1� ZHDÞÞ

MrðZHD � ZLDÞðrs � rwÞ þ rsZLD þ rwð1� ZLDÞ
,

where ZLD ¼ 64% and 74% stand for the packing density of the LD C–S–H and HD C–S–H phase, respectively,

while rs ¼ 2480kg=m3 is the saturated mass density of the C–S–H particle, and rw ¼ 1000kg=m3 is the water

density (saturating the gel porosity). Noting that Mrðw=c ¼ 0:5; x ¼ 0:94Þ ¼ 0:69, we obtain a 62% LD C–S–H

volume fraction.
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3.2. Repeatability of grid indentation technique

The stiffness and hardness values in (18), (20) and (21) are mechanical properties of the
LD C–S–H, HD C–S–H and CH phase obtained from the deconvolution of a total of 300
indentation tests performed on three different areas of the same surface. To study the
accuracy and convergence of the grid indentation technique, Table 1 gives a detailed
account of properties and volume fractions extracted with the deconvolution technique for
each series (N-1, N-2, N-3), which calls for the following comments:
1.
 Mean values mJ : The difference in mean values between different series is on the order or
smaller than the standard deviation, and hence statistically insignificant. It is interesting
to observe that the mean values obtained by deconvoluting the total number of tests
(ALL) is not a simple average of the mean values of the three test series.
2.
 Standard deviation sJ/coefficient of variation ðs=mÞJ : The deviation of the mechanical
properties of each phase from their mean values shows some variation between
test series. The spread of the data for each phase, here quantified in terms of the
standard deviation, respectively coefficient of variation ðs=mÞJ , is generally more
pronounced for hardness than for the indentation modulus. This is a result of at
least three phenomena: (i) the natural variability of each phase related e.g., to variability
of the porosity, which affects strength properties and thus hardness in a more
pronounced way than elasticity properties; (ii) the mechanical interaction
between phases, which affects the hardness more than the indentation modulus; and
(iii) possible errors in the estimation of the contact area Ac which affects the
hardness H / 1=Ac more than the indentation modulus M / 1=

ffiffiffiffiffiffi
Ac

p
(see relations

(1) and (2)).

3.
 Volumetric proportions f J : There is some variation in the volume fraction between test

series, and this more for the volume fraction determined by deconvoluting the hardness
frequency than for the volume fraction obtained by deconvoluting the stiffness
frequency. In general, for volume fraction determination of the constituent phases one
needs to sample a large enough area with closely spaced indents in order to converge to
the actual values. Indeed, as the number of tests increases, the deconvoluted volume
fractions from both M and H converge towards almost the same value. This is
illustrated in Fig. 7, displaying the convergence behavior of the relative volume
fractions LD C–S–H and HD C–S–H. As one would expect, as the number N of indents
increases, the sampling size of the material increases as ‘

ffiffiffiffiffi
N
p

, with ‘ ¼ 10 mm the grid
spacing (distance between individual indents), which is why the relative volumetric
proportions converge. The extraction of volume fractions from the grid indentation
technique becomes of great value in particular in cases where materials do not differ in
their chemistry but rather in their morphology. In the case of C–S–H for example a
quantitative X-ray diffraction analysis is incapable of detecting the two types of C–S–H
and their relative volumetric proportions.

3.3. Mapping the nanostiffness properties

The analysis of each indentation curve provides information about the mechanical
properties at a point of the grid. The discrete data system can then be transformed in a
continuous distribution of mechanical properties by linearly interpolating the nodal values
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over the whole indented surface (grid region). This mapping of nanomechanical properties
provides an additional information about the morphological arrangement of the different
phases in the composite material, within the limits of the grid resolution. Indeed, the
mapping is the more accurate the smaller the spacing between indents compared to
the characteristic length scale of the heterogeneity. However, there is a limit to reducing the
spacing which must avoid interaction between consecutive indents. Furthermore, as the
frequency plots 3–6 show, there is some significant overlap in the distributions between
individual phases, which makes it difficult to define clear boundaries between phases. As a
first-order approach, we choose equal size domains centered around the mean values of
each phase:
1.
 Macroporosity domain M 2 ½0213�GPa: Values situated in this range are associated
with regions for which the indentation response is dominated by high porosity. These
areas are indicative of a morphology dominated by macroporosity.
2.
 LD C–S–H domain M 2 ½13226�GPa: Values situated in this range are contained
within the second peak in the frequency plots and are associated with regions in which
the indentation response is dominated by the LD C–S–H.
3.
 HD C–S–H domain M 2 ½26239�GPa: Values situated in this range correspond to the
third peak in the frequency plots, and are attributed to the dominant effect of the HD
C–S–H.
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4.
 CH domain and unhydrated clinker M439GPa: The higher stiffness values are
indicative of portlandite and unhydrated clinker phases. While the first tends to grow in
regions of high w=c ratios adjacent to macropores and in between LD C–S–H, the
residual clinker phases are generally rimmed by HD C–S–H.

Fig. 8 shows plan views of contour plots of the indentation modulus for the three series
N-1, N-2 and N-3. An SEM image of a cement paste of w=c ¼ 0:5 at 28 days is also
shown in this figure, and demonstrates the qualitative resemblance of the mechanical maps
with electron microscopy images. Hence, the mechanical maps provide a means to
characterize the morphology of the microstructure at the scale defined by the chosen
(nano)indentation depth, and allows visualizing microstructural features. In particular, for
hardened cement paste, the contour plots provide a snapshot of the formation process of
the cement paste: unhydrated clinker particles are rimmed by HD C–S–H which can be
associated with the so-called IPs. Further away from high-stiffness phases is the LD
C–S–H, forming OPs, which seems to be the percolated matrix phase in our w=c ¼ 0:5
material system. Of great importance is also the repeatability of the microstructural
features detected by mapping the mechanical properties. The three images obtained
from three test series are very similar suggesting that a 100� 100mm2 grid surface is able
to avoid any statistical bias in the detection of microstructural features. This is
consistent with the convergence of volume fractions with increasing sampling regions
presented in Fig. 7.

3.4. A posteriori check of indentation invariants

The premise of the grid indentation technique and the related deconvolution technique is
that it is possible to use the tools of continuum indentation analysis by carefully choosing
the indentation depth. A final check of the relevance of this assumption is in order. This is
achieved by evaluating the classical indentation invariants (12). Those relations hold for
each indentation test performed on a homogeneous material. If we indent on a
heterogeneous material, each of those invariants should actually be a discrete random
variable. Hence, for an indentation on a given phase, the relations should be independent
of the indentation depth, provided the scale separability condition is satisfied. In other
words, an investigation of any possible scaling of those invariants provides a means to
verify or falsify the separation of scale condition, on which the continuum indentation
analysis is based. In checking the scaling relationships, however, one needs to separate the
different phases. There is a priori no theoretical reason that the invariants for each phase
should have the same value. In fact, as relations (12) show, the actual value of Pa ¼

Pmax=ðMh2
maxÞ and Pb ¼ Ac=h2

max ¼ Pmax=ðHh2maxÞ is a function of the mechanical
properties of each phase ðc=M; n;jÞ and of the indenter geometry (equivalent half-cone
angle y ¼ 70:32 for Berkovich indentation). Fig. 9 displays the invariants vs. indentation
depth hmax, and identifies data for individual phases. For reference and comparison, let us
note that Berkovich indentation into a linear isotropic elastic half-space yields Pel

a ¼

2=p tan y ¼ 1:78 and Pel
b ¼ 4=p tan2 y ¼ 9:95, which are displayed as vertical straight lines

in Fig. 9. The Pa values we obtain from our experiments are all somewhat smaller than
the elastic values, except for the clinker phase (CL) which has Pa values on the
same order. Similarly, our Pb values are significantly higher than the elastic value.
The most interesting observation is that the value Pb ¼ 30:9� 4:5 takes for different
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Fig. 8. Plan views of mechanical maps of indentation modulus: (a) series N-1; (b) series N-2; (c) series N-3. A

similar magnification of an SEM image (d) is also shown for comparison (courtesy of K. Scrivener). Image size:

150� 150mm2; grid spacing ¼ 10mm.
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phases and different indentation depths does not vary in large proportions. On the
other hand, the values of Pa vary quite significantly, ranging from Pa�0:5 for the
MP-phase to Pa�1:5 for the CL-phase. Due to local material and experimental variations
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a scatter around the mean values is observed which is consistent with the scatter in
the frequency plots in Fig. 6. In the light of Eq. (12a), it is most likely that this variation
is a consequence of the cohesion-to-stiffness ratio c=M. A means of quantifying this
dependence of the heterogeneous response is the indentation modulus-to-hardness ratio,
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M=H ¼ Pb=Pa for the different phases, J:

M

H
¼

47:3 MP;

40:3 LD C2S2H;

35:0 HD C2S2H;

30:9 CH;

14:5 CL:

8>>>>>><
>>>>>>:

(24)

Since Pb is almost the same for all phases, M=H is a mere reflection of the variation of
1=Pa. The values (24) for all phases are all greater than the elastic value
M=H ¼ 2 tan y ¼ 5:59. The value for the residual clinker phase we obtain from our data,
ðM=HÞCL ¼ 14:5 is very close to the one of pure clinker phases reported in the open
literature (Velez et al., 2001): ðM=HÞC3S

¼ 15:5, ðM=HÞC2S
¼ 16:3, ðM=HÞC3A

¼ 13:4 and
ðM=HÞC4AF ¼ 13:2. There is a clear difference between the M=H values of the other
hydration phases, and in particular between LD C–S–H, HD C–S–H and CH, which
provides some evidence that we deal here with different chemomechanical phases of
different stiffness and strength properties. The M=H ratio is on-average constant per
phase, providing a posteriori evidence that the deliberate choice of the indentation depth
(14) leads to satisfying the scale separability condition (5).

4. Discussion

Among the key elements that allow for the assessment of the link between morphology
and mechanical property is the porosity f or its complimentary part the packing density,
Z ¼ 1� f. Unfortunately, cementitious materials have not a single porosity or a single
packing mode, but at least three distinct pore spaces that are of different nature. These are
from the nanoscale to the macroscale: (1) the nanoporosity of a characteristic size smaller
than one nanometer, which separates C–S–H mineral layers; (2) the gel porosity contained
in C–S–H gel on the order of the size of the elementary C–S–H particle, 5 nm, (3) the
capillary porosity of a characteristic size of tens to a hundred nanometer. From weighting
experiments, Jennings (2004) in a number of remarkable papers provides estimates of the
different ‘apparent’ densities of cementitious materials at different scales (see Table 2),
which allows one to build the following three-scale porosity model of the cement paste
(Ulm et al., 2005):

ftot ¼ ðf0ZLD þ fLDÞf LD þ ðf0ZHD þ fHDÞf HD þ fc, (25)

where f0 is the nanoporosity, ZLD ¼ 1� fLD and ZHD ¼ 1� fHD are the packing density
of the LD C–S–H and HD C–S–H, which occupy the relative C–S–H volume proportion
f LD and f HD ¼ 1� f LD, and fc is the capillary porosity. While f LD; f HD and fc depend
on mix proportions (namely on the w=c ratio, the hydration degree, etc.; see Eq. (19)), both
the nanoporosity f0 and the gel packing densities ZLD and ZHD do not vary from one
cementitious material to another; instead they are intrinsic parameters characteristic of the
morphology of all cementitious materials. In particular, from the density values provided
by Jennings (2004) for saturated and dry C–S–H, it is straightforward to estimate the
nanoporosity f0 ¼ 0:18, respectively, the C–S–H sheet packing density Zs ¼ 1� f0 ¼ 0:82.
Similarly, the packing density of the LD C–S–H and HD C–S–H is found to be ZLD ¼ 0:63
and ZHD ¼ 0:76. It is intriguing to remark that these two packing densities almost coincide
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with limit packing densities of spheres: the LD C–S–H packing density almost coincides with
the random packing density of spheres of Z � 0:64, which corresponds to the maximum
packing density in the random close-packed limit (known as RCP) (Jaeger and Nagel, 1992).2

In return, the HD C–S–H packing density almost coincides with the densest possible spherical
packing in three dimensions of Z ¼ p=

ffiffiffiffiffi
18
p
� 0:74 (Sloane, 1998), which is the ordered face-

centered cubic (fcc) or hexagonal close-packed (hcp) packing. We will show below that this is
not a pure coincidence, but a consequence of the morphology the C–S–H particles realize in
situ around two characteristic packing modes one being an unstructured (random) order of
the LD C–S–H the other a highly structured order of the HD C–S–H.

4.1. Link with C– S– H packing density

It is not surprising that the mechanical properties ðM;HÞ increase with the packing
density, as a matching of the nanoindentation modulus and hardness and of the
characteristic packing densities in Tables 1 and 2 shows. However, as Fig. 10 shows, both
indentation stiffness and hardness scale with the packing density along a straight line that
yields a zero stiffness for a packing density of the C–S–H particles of Z�0:5. This particular
behavior is a unique hallmark of granular materials. Indeed, from granular mechanics it is
known that a granular assembly becomes unstable below the random loose-packed limit
(RLP) of Z ¼ 0:56 (Jaeger and Nagel, 1992), which corresponds to the loosest packing of
spheres for which a continuous force path can be established. The nanoindentation results,
therefore, provide evidence that the two packing limits that characterize the LD C–S–H
and HD C–S–H are not a coincidence, but a consequence of a nanogranular nature of
C–S–H. By nanogranular nature we mean a mechanical behavior at the nanoscale of the
C–S–H particles that is dominated by particle-to-particle contact, rather than by mineral
properties. As the packing density increases, the number of contacts increases (Donev et
al., 2004). The higher stiffness and hardness of the HD C–S–H compared to LD C–S–H,
therefore, is attributable to the greater number of contact points that stabilize the particle.
In particular, the hardness ratio HHD=HLD � 1:8 comes very close to the ratio of contact
points: a maximum of 12 points of contacts for the ordered fcc or hcp packing (Sloane,
1998), vs. 6 points of contact for the random packing limit of spheres (Donev et al., 2004).
Furthermore, an extrapolation of the M2Z and H2Z scaling relations in Fig. 10 to Z ¼ 1
provides a means to evaluate the asymptotic contact modulus, ms ¼MðZ ¼ 1Þ, and contact
hardness, hs ¼ HðZ ¼ 1Þ, between C–S–H particles:

Z! 1 : ms ¼ 61:2GPa; hs ¼ 1:78 GPa;
ms

hs
¼ 34:4. (26)

4.2. Complementary micromechanics analysis

Direct experimental measurement of the nanomechanical properties of the 5 nm C–S–H
solid particle is still out of reach, and indeed the only measurable properties by
nanoindentation are the ones of the LD C–S–H and HD C–S–H composite. As an
alternative to the extrapolation (26), we employ, for the indentation data modeling, the
2More recent concepts refer to the RCP as the maximally random jammed state (MRJ), corresponding to the

least ordered among all jammed packings, which has been shown to have a density of 63:7%, and which is very

close to the traditional definition of the random close-packed limit; see Donev et al. (2004), and references cited

herein.
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tools of continuum micromechanics (Suquet, 1997; Zaoui, 2002), or more precisely
those of microporomechanics (Dormieux et al., 2002; Dormieux and Ulm, 2005).
The microelasticity of a porous material whose solid is a granular material, is best
captured by the so-called self-consistent or polycrystal micromechanical model. Indeed,
the self-consistent model of Hershey (1954) and Kröner (1958) is based on averaging
the stress and strain in a spherical grain over all orientations (Kröner, 1971), and
captures a morphology of a perfectly disordered solid phase intermixed with some
porosity. This yields the following expressions of the bulk and shear modulus K and G of
the composite:

K

ks
¼

4ZG=gs

4G=gs þ 3ð1� ZÞrs
, (27)
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G

gs

¼
1

2
�

5

4
ð1� ZÞ �

3

16
rsð2þ ZÞ

þ
1

16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
144ð1� rsÞ � 480Zþ 400Z2 þ 408rsZ� 120rsZ2 þ 9r2s ð2þ ZÞ2

q
, ð28Þ

where ks and gs are bulk and shear modulus of the solid phase, and
rs ¼ ks=gs ¼ 2ð1þ nsÞ=3ð1� 2nsÞ40. As a reminder, the self-consistent scheme has a
packing percolation threshold Z0 ¼ 0:5, which is close to the RLP, for which reason it is
most suitable for modeling the linear elastic behavior of granular materials. The non-
negativity of the composite bulk and shear modulus is ensured for packing densities
ZX0:5. Furthermore, use of (27) and (28) in (3) provides a means to evaluate the link
between the composite indentation modulus M and the solid’s elastic modulus ms as a
function of the composite shear modulus ratio G=gs, the solid’s bulk-to-shear modulus
ratio rs ¼ ks=gs and the packing density Z:

M

ms
¼FscðZ; rsÞ ¼

G

gs

ð9Zrs þ 4G=gs þ 3rsÞð3rs þ 4Þ

4ð4G=gs þ 3rsÞð3rs þ 1Þ
. (29)

In particular, a solid’s Poisson’s ratio of ns ¼ 1
5 ðrs ¼

4
3Þ yields a linear scaling of all elastic

properties with the packing density:

M

ms
¼FscðZ; rs ¼ 4=3Þ ¼ 2Z� 1. (30)

Hence, the micromechanics model provides an explanation for the linear experimental
scaling in Fig. 10. In particular, it allows us to identify the asymptotic contact stiffness
ms ¼MðZ ¼ 1Þ as the stiffness of the solid phase of the nanogranular material.
To substantiate this finding, Fig. 11 displays the indentation modulus scaling relations

for two pore morphologies: the polycrystal morphology as defined by (29) and a matrix-
pore inclusion morphology, which is represented in micromechanics by the Mori–Tanaka
scheme (MT), and for which (Ulm et al., 2004):

M

ms
¼FmtðZ; rsÞ ¼

1

4

Zð8þ 9rsÞð32þ 300rs þ 207r2s � 3Zrsð56þ 33rsÞÞ

ð3rs þ 1Þð24rs � 15Zrs þ 8Þð20þ 15rs � 6Zð2þ rsÞÞ
. (31)

In contrast to the ad hoc linear fitting of the experimental results shown in Fig. 10, the
micromechanics models (29) and (31) provide a rational means to determine not only
the constituent properties ðms; rs ¼ ks=gsÞ, but as well the pore morphology, captured by
the solid percolation threshold Z0 (Z0 ¼ 0 for a matrix-pore inclusion morphology, Z0 ¼

1
2

for a polycrystal morphology); from minimizing the quadratic error between the
experimental indentation modulus and the model values:

min
Z0;ðms;rsÞ

X
i¼LD;HD

ðMi �msFZ0ðZi; rsÞÞ
2, (32)

where FZ0¼1=2 ¼Fsc and FZ0¼0 ¼Fmt are given by (29) and (31), respectively. Fig. 11
shows the results of the back analysis, and details are given in Table 3. The solution of the
minimization problem clearly identifies the C–S–H solid phase as a polycrystal having a
solid stiffness of ms ¼ 60� 2GPa. The optimal Poisson’s ratio is ns ¼ �0:08, hinting
towards a highly compressible solid phase. The micromechanics analysis thus confirms the
nanogranular nature of the two C–S–H phases, LD C–S–H and HD C–S–H: comprised of
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Fig. 11. Indentation modulus—packing density scaling relations for two pore morphologies: the self-consistent

(SC) micromechanical model and the Mori–Tanaka (MT) matrix-pore inclusion model. Both model were fitted to

minimize the error between experimental indentation values and model values. The better fit obtained with the

SC-model confirms the nanogranular morphology of C–S–H.

Table 3

Results of back analysis: ms ¼ C2S2H solid stiffness (in GPa), ns ¼ solid Poisson’s ratio

Mori–Tanaka Self-consistent

C–S–H solid ms ns ms ns
N-1 50:1 0:5 60.6 �0.08

N-2 47:4 0:5 57.9 �0.08

N-3 51:3 0:5 62.7 �0.08

ALL 49:3 0:5 60.1 �0.08

Error ðGPa2Þ 12:3 1.5
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the same solid particle, the different mechanical performance of the two types of C–S–H is
related to differences in their packing density.

Finally, it is appropriate to compare the found C–S–H solid stiffness values with an
estimate of the Young’s modulus of the C–S–H solid phase recently obtained from
atomistic simulations. From energy minimization at 0K, Pellenq and Van Damme (2004)
reported the Young’s modulus of Hamid’s structure ðC=S ¼ 1) to be Es ¼ 57:1GPa, which
compares fairly well with the Young’s modulus we calculate from Es ¼ msð1� n2s Þ ¼
59:7� 1:9GPa.

5. Closure

We have raised the question what type of morphology drives the mechanical behavior of
C–S–H? Based on a novel technique of deconvoluting nanoindentation results, the overall
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picture that emerges from our study is that the C–S–H behaves mechanically like a
nanogranular material, whose behavior is driven by contact forces at particle-to-particle
contact points, rather than by the mineral properties themselves:
1.
 Our results and analysis provide strong evidence for the existence of a unique C–S–H
nanoparticle which forms the basic unit of material invariant properties of all
cementitious materials. This nanoparticle itself is composed of several C–S–H sheets of
a characteristic size in the nanometer range and an 18% nanoporosity. But rather than
those sheets, it is the nanoparticle which is at the origin of the nanogranular behavior of
C–S–H. It may well be that this particular behavior is a result of the hydration
reactions, during which C–S–H particles precipitate randomly and percolate beyond a
packing density of 50%. As the hydration proceeds, the nanogranular units touch each
other, generating contact surfaces and contact points, creating in the course of this
process a material whose behavior is driven by contact forces.
2.
 The nanogranular assembly in hardened cementitious materials exists in a large variety
of densities, from below the percolation threshold of 50% to an almost solid state,
which is consistent with the large surface areas of cementitious materials, as well as with
pore-size distribution studies of cement-based materials. But on-average, the hydration
process leads to a material whose behavior is characterized by two limit packing
densities which we associate with a characteristic LD C–S–H phase and a HD C–S–H
phase. It is emphasized that those packing limits are not deterministic limits in the sense
that the material in the course of its creation moves towards those limit states. In fact,
we see those limit packing states as the densest possible packing that is achieved in the
course of the random generation of nanoparticles during hydration. Each phase, LD
C–S–H and HD C–S–H, spans some range of densities, as testified by the standard
deviations, with a mean centered around, respectively, the random packing limit
(Z ¼ 64%) and the cubic or hexagonal close packing (Z ¼ 74%) of spheres.

Finally, one may raise the question whether the C–S–H particles are actually spherical or
not? Our nanoindentation technique being a statistical one, clearly cannot answer this
question. However, if we remind ourselves that the ‘sphere’ is the easiest ‘isotropic’
morphology, then its successful application to C–S–H demonstrated here, hints towards an
amorphous structure of C–S–H that determines the average nanomechanical response of
C–S–H. While we cannot (and do not want to) exclude other morphologies, there is little
doubt that those morphological features play on-average a second-order effect on the
stiffness and strength behavior of C–S–H.
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